Gaussian Kernel Based Classification Approach for Wheat Identification
نویسندگان
چکیده
Agriculture holds a pivotal role in context to India, which is basically agrarian economy. Crop type identification is a key issue for monitoring agriculture and is the basis for crop acreage and yield estimation. However, it is very challenging to identify a specific crop using single date imagery. Hence, it is highly important to go for multi-temporal analysis approach for specific crop identification. This research work deals with implementation of fuzzy classifier; Possibilistic c-Means (PCM) with and without kernel based approach, using temporal data of Landsat 8OLI (Operational Land Imager) for identification of wheat in Radaur City, Haryana. The multitemporal dataset covers complete phenological cycle that is from seedling to ripening of wheat crop growth. The experimental results show that inclusion of Gaussian kernel, with Euclidean Norm (ED Norm) in Possibilistic c-Means (KPCM), soft classifier has been more robust in identification of the wheat crop. Also, identification of all the wheat fields is dependent upon appropriate selection of the temporal date. The best combination of temporal data corresponds to tillering, stem extension, heading and ripening stages of wheat crop. Entropy at testing sites of wheat has been used to validate the classified results. The entropy value at testing sites was observed to be low, implying lower uncertainty of existence of any other class at wheat test sites and high certainty of existence of wheat crop.
منابع مشابه
تشخیص سرطان پستان با استفاده از برآورد ناپارمتری چگالی احتمال مبتنی بر روشهای هستهای
Introduction: Breast cancer is the most common cancer in women. An accurate and reliable system for early diagnosis of benign or malignant tumors seems necessary. We can design new methods using the results of FNA and data mining and machine learning techniques for early diagnosis of breast cancer which able to detection of breast cancer with high accuracy. Materials and Methods: In this study,...
متن کاملA Kullback-Leibler Divergence Based Kernel for SVM Classification in Multimedia Applications
Over the last years significant efforts have been made to develop kernels that can be applied to sequence data such as DNA, text, speech, video and images. The Fisher Kernel and similar variants have been suggested as good ways to combine an underlying generative model in the feature space and discriminant classifiers such as SVM’s. In this paper we suggest an alternative procedure to the Fishe...
متن کاملRecognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model
Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....
متن کاملA new SVM approach to speaker identification and verification using probabilistic distance kernels
One major SVM weakness has been the use of generic kernel functions to compute distances among data points. Polynomial, linear, and Gaussian are typical examples. They do not take full advantage of the inherent probability distributions of the data. Focusing on audio speaker identification and verification, we propose to explore the use of novel kernel functions that take full advantage of good...
متن کاملSystem identification based on Support Kernels Regression
This paper deals with the identification of nonlinear systems using multi-kernel approach. In this context, we have improved the Support Vector Regression (SVR) method in order to identify nonlinear complex system. Our idea consists in dividing the regressor vector in several blocks, and, for each one a kernel function is used. This blockwise SVR approach is called Support Kernel Regression (SK...
متن کامل